Space Hubble Telescope News

Mini-Flares Potentially Jeopardize Habitability of Planets Circling Red Dwarf Stars

STScI-H-p1723a-f4400x3400.tif


low_STScI-H-p1723a-k1350x520.png


Solar flares and associated eruptions can trigger auroras on Earth or, more ominously, damage satellites and power grids. Could flares on cool, red dwarf stars cause even more havoc to orbiting planets, even rendering them uninhabitable? To help answer that question, astronomers sought to find out how many flares such stars typically unleash.

A new study of archival ultraviolet observations from the Galaxy Evolution Explorer (GALEX) spacecraft detected dozens of flares from red dwarf stars. Some flares were weaker than any previously detected. Since smaller flares tend to occur more frequently, these tiny flares might have big implications for planetary habitability. (More at Hubble Site)
 
Jackpot! Cosmic Magnifying-Glass Effect Captures Universe's Brightest Galaxies

STSCI-H-p1724a-f-3190x2128.tif


low_STSCI-H-p1724a-k-1340x520.png


Galaxies Shine with the Brilliance of up to 100 Trillion Suns

Astronomers were fascinated in the 1980s with the discovery of nearby dust-enshrouded galaxies that glowed thousands of times brighter than our Milky Way galaxy in infrared light. Dubbed ultra-luminous infrared galaxies, they were star-making factories, churning out a prodigious amount of stars every year. What wasn't initially clear was what powered these giant infrared light bulbs. Observations by the Hubble Space Telescope helped astronomers confirm the source of the galaxies' light output. Many of them reside within "nests" of galaxies engaged in multiple pile-ups of three, four or even five galaxies. The dust is produced by the firestorm of star birth, which glows fiercely in infrared light.

Now Hubble is illuminating the bright galaxies' distant dust-enshrouded cousins. Boosted by natural magnifying lenses in space, Hubble has captured unique close-up views of the universe's brightest infrared galaxies. The galaxies are ablaze with runaway star formation, pumping out more than 10,000 new stars a year. This unusually rapid star birth is occurring at the peak of the universe's star-making boom more than 8 billion years ago. The star-birth frenzy creates lots of dust, which enshrouds the galaxies, making them too faint to detect in visible light. But they glow fiercely in infrared light, shining with the brilliance of 10 trillion to 100 trillion suns.

The galaxy images, magnified through a phenomenon called gravitational lensing, reveal a tangled web of misshapen objects punctuated by exotic patterns such as rings and arcs. The odd shapes are due largely to the foreground lensing galaxies' powerful gravity distorting the images of the background galaxies. Two possibilities for the star-making frenzy are galaxy collisions or gas spilling into the galaxies. (More at Hubble Site)
 
Hubble Astronomers Develop a New Use for a Century-Old Relativity Experiment to Measure a White Dwarf's Mass

STScI-H-p1725a-f4250x3117.tif


low_STScI-H-p1725a-k1340x520.png


White dwarf shows how gravity can bend starlight

Albert Einstein reshaped our understanding of the fabric of space. In his general theory of relativity in 1915, he proposed the revolutionary idea that massive objects warp space, due to the effects of gravity. Until that time, Isaac Newton's theory of gravity from two centuries earlier held sway: that space was unchanging. Einstein's theory was experimentally verified four years later when a team led by British astronomer Sir Arthur Eddington measured how much the sun's gravity deflected the image of a background star as its light grazed the sun during a solar eclipse. Astronomers had to wait a century, however, to build telescopes powerful enough to detect this gravitational warping phenomenon caused by a star outside our solar system. The amount of deflection is so small only the sharpness of the Hubble Space Telescope could measure it.

Hubble observed the nearby white dwarf star Stein 2051 B as it passed in front of a background star. During the close alignment, the white dwarf's gravity bent the light from the distant star, making it appear offset by about 2 milliarcseconds from its actual position. This deviation is so small that it is equivalent to observing an ant crawl across the surface of a quarter from 1,500 miles away. (More at Hubble Site)
 
Hubble Astronomers Develop a New Use for a Century-Old Relativity Experiment to Measure a White Dwarf's Mass

STScI-H-p1725a-f4250x3117.tif


low_STScI-H-p1725a-k1340x520.png


White dwarf shows how gravity can bend starlight

Albert Einstein reshaped our understanding of the fabric of space. In his general theory of relativity in 1915, he proposed the revolutionary idea that massive objects warp space, due to the effects of gravity. Until that time, Isaac Newton's theory of gravity from two centuries earlier held sway: that space was unchanging. Einstein's theory was experimentally verified four years later when a team led by British astronomer Sir Arthur Eddington measured how much the sun's gravity deflected the image of a background star as its light grazed the sun during a solar eclipse. Astronomers had to wait a century, however, to build telescopes powerful enough to detect this gravitational warping phenomenon caused by a star outside our solar system. The amount of deflection is so small only the sharpness of the Hubble Space Telescope could measure it.

Hubble observed the nearby white dwarf star Stein 2051 B as it passed in front of a background star. During the close alignment, the white dwarf's gravity bent the light from the distant star, making it appear offset by about 2 milliarcseconds from its actual position. This deviation is so small that it is equivalent to observing an ant crawl across the surface of a quarter from 1,500 miles away. (More at Hubble Site)
 
Hubble Astronomers Develop a New Use for a Century-Old Relativity Experiment to Measure a White Dwarf's Mass

STScI-H-p1725a-f4250x3117.tif


low_STScI-H-p1725a-k1340x520.png


White dwarf shows how gravity can bend starlight

Albert Einstein reshaped our understanding of the fabric of space. In his general theory of relativity in 1915, he proposed the revolutionary idea that massive objects warp space, due to the effects of gravity. Until that time, Isaac Newton's theory of gravity from two centuries earlier held sway: that space was unchanging. Einstein's theory was experimentally verified four years later when a team led by British astronomer Sir Arthur Eddington measured how much the sun's gravity deflected the image of a background star as its light grazed the sun during a solar eclipse. Astronomers had to wait a century, however, to build telescopes powerful enough to detect this gravitational warping phenomenon caused by a star outside our solar system. The amount of deflection is so small only the sharpness of the Hubble Space Telescope could measure it.

Hubble observed the nearby white dwarf star Stein 2051 B as it passed in front of a background star. During the close alignment, the white dwarf's gravity bent the light from the distant star, making it appear offset by about 2 milliarcseconds from its actual position. This deviation is so small that it is equivalent to observing an ant crawl across the surface of a quarter from 1,500 miles away. (More at Hubble Site)
 
Hubble Captures Massive Dead Disk Galaxy that Challenges Theories of Galaxy Evolution

STSCI-H-p1726a-f-3528x2822.tif


low_STSCI-H-p1726a-k-1340x520.png


Young, Dead, Compact, Disk Galaxy Surprises Astronomers, Offers New Clues to How Modern-Day Elliptical Galaxies Formed

Astronomers combined the power of a “natural lens” in space with the capability of NASA’s Hubble Space Telescope to make a surprising discovery—the first example of a compact yet massive, fast-spinning, disk-shaped galaxy that stopped making stars only a few billion years after the big bang. Researchers say that finding such a galaxy so early in the history of the universe challenges the current understanding of how massive galaxies form and evolve. Astronomers expected to see a chaotic ball of stars formed through galaxies merging together. Instead, they saw evidence that the stars were born in a pancake-shaped disk. The galaxy, called MACS 2129-1, is considered “dead” because it is no longer making stars. This new insight is forcing astronomers to rethink their theories of how galaxies burn out early on and evolve into local elliptical-shaped galaxies. “Perhaps we have been blind to the fact that early ‘dead’ galaxies could in fact be disks, simply because we haven’t been able to resolve them,” said study leader Sune Toft of the Dark Cosmology Center at the Niels Bohr Institute, University of Copenhagen. (More at Hubble Site)
 
Hubble Pushed Beyond Limits to Spot Clumps of New Stars in Distant Galaxy

STSCI-H-p1727a-m-2000x1500.png


low_STSCI-H-p1727a-k-1340x520.png


Gravitational lens helps reveal "fireworks" in the early universe

When the universe was young, stars formed at a much higher rate than they do today. By peering across billions of light-years of space, Hubble can study this early era. But at such distances, galaxies shrink to smudges that hide key details. Astronomers have teased out those details in one distant galaxy by combining Hubble’s sharp vision with the natural magnifying power of a gravitational lens. The result is an image 10 times better than what Hubble could achieve on its own, showing dense clusters of brilliant, young stars that resemble cosmic fireworks. (More at Hubble Site)
 
NASA’s Hubble Sees Martian Moon Orbiting the Red Planet

STSCI-H-p1729a-f-3000x2400.tif


low_STSCI-H-p1729a-k-1340x520.png


The Tiny Moon Phobos Is Photographed During Its Quick Trip Around Mars

While photographing Mars, NASA’s Hubble Space Telescope captured a cameo appearance of the tiny moon Phobos on its trek around the Red Planet. Discovered in 1877, the diminutive, potato-shaped moon is so small that it appears star-like in the Hubble pictures. Phobos orbits Mars in just 7 hours and 39 minutes, which is faster than Mars rotates. The moon’s orbit is very slowly shrinking, meaning it will eventually shatter under Mars’ gravitational pull, or crash into the planet. Hubble took 13 separate exposures over 22 minutes to create a time-lapse video showing the moon’s orbital path. (More at Hubble Site)
 
NASA's Hubble Sees Martian Moon Orbiting the Red Planet

STSCI-H-p1729a-f-3000x2400.tif


low_STSCI-H-p1729a-k-1340x520.png


The Tiny Moon Phobos Is Photographed During Its Quick Trip Around Mars

While photographing Mars, NASA’s Hubble Space Telescope captured a cameo appearance of the tiny moon Phobos on its trek around the Red Planet. Discovered in 1877, the diminutive, potato-shaped moon is so small that it appears star-like in the Hubble pictures. Phobos orbits Mars in just 7 hours and 39 minutes, which is faster than Mars rotates. The moon’s orbit is very slowly shrinking, meaning it will eventually shatter under Mars’ gravitational pull, or crash into the planet. Hubble took 13 separate exposures over 22 minutes to create a time-lapse video showing the moon’s orbital path. (More at Hubble Site)
 
Hubble Detects Exoplanet with Glowing Water Atmosphere

STScI-H-p1731a-f4500x3600.tif


low_STScI-H-p1731a-k1340x520.png


Scorching "Hot Jupiter" Has a Stratospheric Layer

Only when we fly in a commercial jet at an altitude of about 33,000 feet do we enter Earth's stratosphere, a cloudless layer of our atmosphere that blocks ultraviolet light. Astronomers were fascinated to find evidence for a stratosphere on a planet orbiting another star. As on Earth, the planet's stratosphere is a layer where temperatures increase with higher altitudes, rather than decrease. However, the planet (WASP-121b) is anything but Earth-like. The Jupiter-sized planet is so close to its parent star that the top of the atmosphere is heated to a blazing 4,600 degrees Fahrenheit (2,500 degrees Celsius), hot enough to rain molten iron! This new Hubble Space Telescope observation allows astronomers to compare processes in exoplanet atmospheres with the same processes that happen under different sets of conditions in our own solar system. (More at Hubble Site)
 
Icy Moons, Galaxy Clusters, and Distant Worlds Among Selected Targets for James Webb Space Telescope

STScI-H-p1728f-2880x2880.png


low_STScI-H-p1728k1340x520.png


Webb Telescope Guaranteed Time Observations Targets Announced

Mission officials for NASA’s James Webb Space Telescope announced some of the science targets the telescope will observe following its launch and commissioning. These specific observations are part of a program of Guaranteed Time Observations (GTO), which provides dedicated time to the scientists that helped design and build the telescope’s four instruments. The broad spectrum of initial GTO observations will address all of the science areas Webb is designed to explore, from first light and the assembly of galaxies to the birth of stars and planets. Targets will range from the solar system’s outer planets (Jupiter, Saturn, Uranus, and Neptune) and icy Kuiper Belt to exoplanets to distant galaxies in the young universe. (More at Hubble Site)
 
Heritage Project Celebrates Five Years of Harvesting the Best Images from Hubble Space Telescope

full_jpg.jpg


The Hubble Heritage team of astronomers, who assemble many of the NASA Hubble Space Telescope's most stunning pictures, is celebrating its five-year anniversary with the release of the picturesque Sombrero galaxy. One of the largest Hubble mosaics ever assembled, this magnificent galaxy has an apparent diameter that is nearly one-fifth the diameter of the full moon. The team used Hubble's Advanced Camera for Surveys to take six pictures of the galaxy and then stitched them together to create the final composite image. The photo reveals a swarm of stars in a pancake-shaped disk as well as a glowing central halo of stars. (More at Hubble Site)
 
Space Phenomenon Imitates Art in Universe's Version of van Gogh Painting

print.jpg


This image resembling Vincent van Gogh's painting, "Starry Night," is Hubble's latest view of an expanding halo of light around a distant star, named V838 Monocerotis (V838 Mon). This Hubble image was obtained with the Advanced Camera for Surveys on February 8, 2004. The illumination of interstellar dust comes from the red supergiant star at the middle of the image, which gave off a flashbulb-like pulse of light two years ago. V838 Mon is located about 20,000 light-years away from Earth in the direction of the constellation Monoceros, placing the star at the outer edge of our Milky Way galaxy. (More at Hubble Site)
 
Dying Star Creates Fantasy-like Sculpture of Gas and Dust

print.jpg


In this detailed view from NASA's Hubble Space Telescope, the so-called Cat's Eye Nebula looks like the penetrating eye of the disembodied sorcerer Sauron from the film adaptation of "The Lord of the Rings." The nebula, formally cataloged NGC 6543, is every bit as inscrutable as the J.R.R. Tolkien phantom character. Though the Cat's Eye Nebula was one of the first planetary nebulae to be discovered, it is one of the most complex such nebulae seen in space. (More at Hubble Site)
 
A Poster-Size Image of the Beautiful Barred Spiral Galaxy NGC 1300

full_jpg.jpg


One of the largest Hubble Space Telescope images ever made of a complete galaxy is being unveiled today at the American Astronomical Society meeting in San Diego, Calif. The Hubble telescope captured a display of starlight, glowing gas, and silhouetted dark clouds of interstellar dust in this 4-foot-by-8-foot image of the barred spiral galaxy NGC 1300. (More at Hubble Site)
 
A Giant Hubble Mosaic of the Crab Nebula

full_jpg.jpg


The Crab Nebula is a six-light-year-wide expanding remnant of a star's supernova explosion. Japanese and Chinese astronomers recorded this violent event nearly 1,000 years ago in 1054, as did, almost certainly, Native Americans. This composite image was assembled from 24 individual exposures taken with the NASA Hubble Space Telescope's Wide Field and Planetary Camera 2 in October 1999, January 2000, and December 2000. It is one of the largest images taken by Hubble and is the highest resolution image ever made of the entire Crab Nebula. (More at Hubble Site)
 
Hubble Panoramic View of Orion Nebula Reveals Thousands of Stars

full_jpg.jpg


In one of the most detailed astronomical images ever produced, NASA's Hubble Space Telescope captured an unprecedented look at the Orion Nebula. This turbulent star formation region is one of astronomy's most dramatic and photogenic celestial objects. More than 3,000 stars of various sizes appear in this image. Some of them have never been seen in visible light. These stars reside in a dramatic dust-and-gas landscape of plateaus, mountains, and valleys that are reminiscent of the Grand Canyon. The Orion Nebula is a picture book of star formation, from the massive, young stars that are shaping the nebula to the pillars of dense gas that may be the homes of budding stars. (More at Hubble Site)
 
Super Star Clusters in the Antennae Galaxies

full_jpg.jpg


This new NASA Hubble Space Telescope image of the Antennae galaxies is the sharpest yet of this merging pair of galaxies. During the course of the collision, billions of stars will be formed. The brightest and most compact of these star birth regions are called super star clusters. The new image allows astronomers to better distinguish between the stars and super star clusters created in the collision of two spiral galaxies. (More at Hubble Site)
 
Hubble Observes Infant Stars in Nearby Galaxy

full_jpg.jpg


This new image taken with NASA's Hubble Space Telescope depicts bright, blue, newly formed stars that are blowing a cavity in the center of a star-forming region in the Small Magellanic Cloud. (More at Hubble Site)
 
Back
Top